

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Elastic v4.0.28-2-g1c3d54c
 documentation

Calculation of elastic properties of crystals

 [http://dx.doi.org/10.5281/zenodo.18759]Elastic is a set of python routines for calculation of elastic properties of
crystals (elastic constants, equation of state, sound velocities, etc.).
It is a third version of the in-house code I have
written over several years and is implemented as a extension to the
ASE [https://wiki.fysik.dtu.dk/ase/] system.
The code was a basis for some of my publications and was
described briefly in these papers. The code was available to anyone, presented
at our Workshop on ab initio Calculations in Geosciences [http://wolf.ifj.edu.pl/workshop/work2008/]
and used by some of my co-workers but was never properly published with
full documentation, project page etc. Nevertheless the old code is still available
to anyone as Elastic 2 [http://wolf.ifj.edu.pl/~jochym/elastic2/elastic2.tgz].
I just do not recommend to use it without my help - which I am happy to provide.

In 2010, I have decided to re-implement elastic as a module for the
ASE [https://wiki.fysik.dtu.dk/ase/] system and publish it properly under
the GPL.

The source code started live on the
launchpad project page [https://launchpad.net/elastic] and later in 2014
moved to the github repository [https://github.com/jochym/Elastic] with
corresponding elastic web page [https://jochym.github.io/Elastic/] and
on-line documentation placed at Elastic website [http://wolf.ifj.edu.pl/elastic/]
(you are probably reading from it already). You can obtain the documentation as a
PDF file [http://wolf.ifj.edu.pl/~jochym/Elastic.pdf] as well.

The project is open and I welcome patches, ideas and other feedback.
You can also support the project and motivate me to work on it even more
by donating using bitcoin address: 1Geq8khANDueVt1QdCS5GU2oNCtdc1uSMv .

	Physical Principles
	Elasticity of crystals

	Numerical derivation of elastic matrix

	Crystal symmetry and elastic matrix derivation

	Implementation
	Modules
	Parallel Calculator Module

	Elastic Module

	Installation
	Testing

	Usage
	Simple Parallel Calculation

	Birch-Murnaghan Equation of State

	Calculation of the elastic tensor

	Indices and tables

	References

	Search Page

 Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Elastic v4.0.28-2-g1c3d54c
 documentation

Physical Principles

Elastic is based on the standard elasticity theory (see [LL] for the detailed
introduction) and finite deformation approach to the calculation of elastic
tensor of the crystal.
I have described basic physical principles on which the code rests in my
habilitation thesis. Here I will include slightly edited second chapter of the
thesis introducing the method and some implementation details.

Elasticity of crystals

The classical, linear theory of elasticity of crystalline materials has been
formulated already in the 18th and 19th century by Cauchy, Euler, Poisson,
Young and many other great mathematicians and physicists of that time. The
standard textbook formulation (e.g. classical book by Landau et al. [LL]) can
be, in principle, directly used as a basis for numerical determination of the
elastic tensor and other mechanical properties of the crystal. Nevertheless,
practical implementation of these formulas have some non-obvious aspects,
worthy of explicit presentation. The finite deformation method developed and
used in the mentioned papers [TiC], [ZrC] is based on the fundamental
relationship between stress and strain of the solid crystalline body with a
particular symmetry. This is a simple tensor equation, sometimes called
generalised Hook’s law (in standard tensor notation):

\[\sigma_{\lambda\xi} = C_{\lambda\xi\mu\nu} s_{\mu\nu}\]

This formula simply states that the stress in the crystal
\(\sigma_{\lambda\xi}\) is a linear function of the strain
\(s_{\mu\nu}\) incurred by its deformation, and the elasticity tensor
\(C_{\lambda\xi\mu\nu}\) is just a tensor proportionality coefficient. The
Greek indexes run through coordinates x, y, z. The elasticity tensor inherits
symmetries of the crystal and has some intrinsic symmetries of its own.
Therefore, only a small number of its components are independent. This fact
leads to customary representation of this entity in the form of the matrix with
components assigned according to Voight’s notation. Thus, instead of the rank-4
three dimensional tensor we have \(6 \times 6\) matrix \(C_{ij}\) where
the indexes \(i, j = 1 \ldots 6\). The stress and strain tensors are
represented as six-dimensional vectors. The symmetries of the elastic tensor are
directly translated into symmetries of the \(C_{ij}\) matrix. The Voight’s
notation is commonly used in tensor calculus. For this particular case we can
write it as an index assignment where each pair of Greek indexes is replaced
with a corresponding Latin index (i, j, k, l, m, n): xx=1, yy=2, zz=3,
yz=4, xz=5, xy=6.

While this convention makes presentation of elastic constants much easier -
since it is just a square table of numbers - it slightly complicates algebraic
procedures as we lose the simplicity of the tensor formalism. Every class of
crystal implies, through its symmetry, a different number of independent
elements in the \(C_{ij}\) matrix.

For example, the cubic lattice has just three independent elements in the
elastic matrix: \(C_{11}, C_{12}, C_{44}\), and the matrix itself has the following shape:

\[\begin{split}\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0\\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0\\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0\\
0 & 0 & 0 & C_{44} & 0 & 0\\
0 & 0 & 0 & 0 & C_{44} & 0\\
0 & 0 & 0 & 0 & 0 & C_{44}\end{array}\right]\end{split}\]

Less symmetric crystals have, naturally, a higher number of independent elastic
constants and lower symmetry of the \(C_{ij}\) matrix (see [LL] for full
introduction to theory of elasticity).

Numerical derivation of elastic matrix

Numerical derivation of the \(C_{ij}\) matrix may be approached in many
different ways. Basically, we can employ the same methods as used
effectively in experimental work. From all experimental procedures we can select
three classes which are relevant to our discussion:

	Based on the measured sound velocity, including various methods based on determination of lattice dynamics of the crystal.

	Based on the strain-energy relation.

	Based on the measured stress-strain relations for some particular, simple strains.

While the first method is frequently used in laboratory measurements, it is not
direct and is not well suited to numerical derivation. For example, you can
measure the tangent of all acoustic branches of phonon dispersion curves in
several directions to get enough data points to solve the set of equations
for most of the independent components of the \(C_{ij}\) matrix. The
tangent of the acoustic branch is connected with the sound velocity and with
components of elastic matrix by a set of equations of the general form:

\[\varrho v_{k}^{2}=L(C_{ij})\]

where \(L(C_{ij})\) is a linear combination of independent components
of elastic tensor, \(v_{k}\) is a long-wave sound velocity in particular
direction, which is equivalent to the slope of the acoustic branch
of phonon dispersion curve in this direction, and \(\varrho\) is crystal
density. Full set of these equations for the cubic crystal is included
in [TiC]. Unfortunately, it is difficult and non-practical
to use this method to obtain more then few of the simplest of components,
since the numerical properties of the non-linear formulas involved
lead to the error pile-up in the results. It is particularly susceptible
to errors in long-wave sound velocities – due to the quadratic function
in above equation. Unfortunately, these asymptotic velocities
are particularly weakly constrained by most of available computational
methods. The same formulas can also be used to obtain elastic matrix
from straight-forward sound velocity measurements. The same unfavourable
numerical properties lead to high demands on accuracy of the measurements
– but in this case these requirements could be quite easily met in
experiment since sound velocity can be measured with very high precision.

The second method is not practical for laboratory measurements - it is not easy
to accurately measure energy of the deformed crystal. Furthermore, the
strain-energy relation is non-linear and we need to extract a derivative of the
function – the procedure is quite complex, needs more data points and is prone
to errors.

The third method is well suited for experimental work as well as computational
derivation of the elastic matrix. The numerical properties of the formulas –
being just a set of linear equations – are well known and provide stable and
well-controlled error propagation. Furthermore, while the sound velocity is not
directly accessible to computational quantum mechanical methods, the stresses
induced by strains on the crystal are almost universally provided by DFT based
programs and often do not require any additional computational effort. The
comparison of these methods used for computational derivation of the elastic
matrix is included in [TiC], [ZrC]. The comparison shows that the finite
deformation (stress-strain) method compares favourably to the pure
energy-derivative method. The results clearly show that the strain–stress
relationship approach described here is much better suited for computational
derivation of elastic matrix and provides lower error level than other two
methods.

Crystal symmetry and elastic matrix derivation

As mentioned above, the symmetry of the crystal determines the number and
position of independent components of the \(C_{ij}\) matrix. Therefore, the
stress-strain relation is effectively modified by the symmetry of the case by a
simple fact that most, of the coefficients are not independent from one another.
We aim to derive the complete set of \(C_{ij}\) elements from the set of
computational or experimental measurements of strain and stress tensors
\(s^{a}\), \(\sigma^{a}\) where the upper Latin index a numbers a
calculation/experiment setup. In the case described here the “measurement” is a
particular computational setup with the crystal deformed in various ways in
order to provide enough data points to derive all independent components of the
\(C_{ij}\) matrix. The set of necessary deformations can be determined by
the symmetry of the crystal and contains tetragonal and sheer deformations along
some or all axis – as the symmetry of the case dictates. To improve the
accuracy of the results the deformations may be of different sizes (typically
0.1-1% in length or 0.1-1 degree in angle).

Having a set of calculation data \(\{s^{a}, \sigma^{a}\}\), we can rewrite
generalised Hook’s law to form a set of linear equations (in Voight notation for
\(i,j\) indexes): \(C_{ij}s_{j}^{a}=\sigma_{i}^{a}\). This set can be
further transformed for each symmetry case to the form in which the independent
components of the \(C_{ij}\) matrix create a vector of unknowns and the
symmetry relations and strains \(s_{j}^{a}\) create a new equation matrix
\(S\). \(S_{ju}(s^{a})C_{u}=\sigma_{j}^{a}\). The \(S(s)\) matrix is
a linear function of the strain vector s with all symmetry relations taken into
account. The index a runs over all data sets we have in the calculation while
index u runs over all independent components of the \(C_{ij}\) matrix. For
the cubic crystal the above equation takes explicit form:

\[\begin{split}\left[\begin{array}{ccc}
s_{1} & s_{2}+s_{3} & 0\\
s_{2} & s_{1}+s_{3} & 0\\
s_{3} & s_{1}+s_{2} & 0\\
0 & 0 & 2s_{4}\\
0 & 0 & 2s_{5}\\
0 & 0 & 2s_{6}\end{array}\right]^{a}\left[\begin{array}{c}
C_{11}\\
C_{12}\\
C_{44}\end{array}\right]=\left[\begin{array}{c}
\sigma_{1}\\
\sigma_{2}\\
\sigma_{3}\\
\sigma_{4}\\
\sigma_{5}\\
\sigma_{6}\end{array}\right]^{a}.\end{split}\]

Note the a index of S and \(\sigma\), which creates a set of
\(n\times6\) linear equations for 3 unknowns
\(\left[C_{11},C_{12},C_{44}\right]\), where n is a number of independent
calculations of stresses incurred in crystal by strains. In principle, the above
relations could be expressed in the non-symmetry specific form with either a
full set of indexes and the symmetry information encoded in the single matrix of
constant elements or even in the pure tensor formulation with the four-index
elastic tensor \(C\) and two-index stress and strain tensors. While this
type of formulation is definitely more regular and sometimes easier to
manipulate in formal transformations, it is not very useful for numerical
calculations or writing computer code – multi-dimensional arrays are difficult
to manipulate and are prone to many trivial notation errors. Thus, it is better
to split the general formula to crystal classes with different number of
\(C_{ij}\) components (i.e. length of the \(C_{u}\) vector)
and separate shape of the \(S\) matrix. This is an approach used by Elastic.

For example, in the orthorhombic crystal the vector of independent
\(C_{ij}\) components has nine elements and the S matrix is a \(9\times6\) one:

\[\begin{split}\left[\begin{array}{ccccccccc}
s_{1} & 0 & 0 & s_{2} & s_{3} & 0 & 0 & 0 & 0\\
0 & s_{2} & 0 & s_{1} & 0 & s_{3} & 0 & 0 & 0\\
0 & 0 & s_{3} & 0 & s_{1} & s_{2} & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 2s_{4} & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2s_{5} & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2s_{6}\end{array}\right]^{a}\left[\begin{array}{c}
C_{11}\\
C_{22}\\
C_{33}\\
C_{12}\\
C_{13}\\
C_{23}\\
C_{44}\\
C_{55}\\
C_{66}\end{array}\right]=\left[\begin{array}{c}
\sigma_{1}\\
\sigma_{2}\\
\sigma_{3}\\
\sigma_{4}\\
\sigma_{5}\\
\sigma_{6}\end{array}\right]^{a}.\end{split}\]

The elements of the matrix S have direct relation to the terms of expansion of
the elastic free energy as a function of deformation (strain tensor) F(s). For
example, the orthorhombic equation can be derived from the free energy formula
(see [LL] for derivation):

\[\begin{split}F(s) = \frac{1}{2}C_{11}s_{1}^{2}+
 \frac{1}{2}C_{22}s_{2}^{2}+
 \frac{1}{2}C_{33}s_{3}^{2}+
 C_{12}s_{1}s_{2}+C_{13}s_{1}s_{3}+C_{23}s_{2}s_{3}+ \\
 2C_{44}s_{4}^{2}+2C_{55}s_{5}^{2}+2C_{66}s_{6}^{2}\end{split}\]

The elements of the S matrix are simply coefficients of first derivatives of the
F(s) over respective strain components. Alternatively, we can rewrite the S(s)
matrix in the compact form as a mixed derivative:

\[S_{iu}=A\frac{\partial^{2}F}{\partial s_{i}\partial C_{u}},\]

where A is a multiplier taking into account the double counting of the
off-diagonal components in the free energy formula (see note at the end of the
exercises in [LL]). The multiplier \(A=1\) for
\(i \leq 4\), and \(1/2\) otherwise. The above general formula turns out to be quite
helpful in less trivial cases of trigonal or hexagonal classes. For instance,
the hexagonal elastic free energy (see [LL] for rather lengthy formula) leads
to the following set of equations:

\[\begin{split}\left[\begin{array}{ccccc}
s_{1} & 0 & s_{2} & s_{3} & 0\\
s_{2} & 0 & s_{1} & s_{3} & 0\\
0 & s_{3} & 0 & s_{1}+s_{2} & 0\\
0 & 0 & 0 & 0 & 2s_{4}\\
0 & 0 & 0 & 0 & 2s_{5}\\
s_{6} & 0 & -s_{6} & 0 & 0\end{array}\right]^{a}\left[\begin{array}{c}
C_{11}\\
C_{33}\\
C_{12}\\
C_{13}\\
C_{44}\end{array}\right]=\left[\begin{array}{c}
\sigma_{1}\\
\sigma_{2}\\
\sigma_{3}\\
\sigma_{4}\\
\sigma_{5}\\
\sigma_{6}\end{array}\right]^{a}.\end{split}\]

The set of linear equations, with calculated strains and stresses inserted
into the \(S^{a}\) matrix and \(\sigma^{a}\) vector, could be
constructed for any crystal – only the form of the S matrix and the length of
the \(C_{u}\) vector will be different for each symmetry.

The set of equations is usually over-determined. Therefore, it
cannot be solved in the strict linear-algebra sense since no exact solution
could exist. Nevertheless, this set of equations can be solved in approximate
sense – i.e. minimising the length of the residual vector of the solution.
Fortunately, a very clever algorithm capable of dealing with just this type of
linear equations has been known for a long time. It is called Singular Value
Decomposition [SVD]. Not only does it provide the approximate solution
minimising the residual vector of the equation but also is stable against
numerically ill-conditioned equations or equations which provide too little data
to determine all components of the solution. The SVD provides also some
indication of the quality of the obtained solution in the form of the vector of
singular values, which could be used to judge whether the solution is
well-determined. It is a well known algorithm and its implementations are
available in every self-respecting numerical linear algebra library. The
implementation used in the Elastic code is the one included in the Scientific
Python library SciPy [http://www.scipy.org/].

 Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Elastic v4.0.28-2-g1c3d54c
 documentation

Implementation

Elastic is implemented as an extension module to
ASE [https://wiki.fysik.dtu.dk/ase/] system

The Elastic package provides, basically, one main python module and one
auxiliary module (Parallel Calculator Module) which can be useful outside of
the scope of the main code. The Parallel Calculator Module is not distributed
separately but can be just placed by itself somewhere in your python path
and used with any part of the ASE.
I hope it will be incorporated in the main project sometime in the future.

Modules

Parallel Calculator Module

Parallel calculator module is an extension of the standard
ASE [https://wiki.fysik.dtu.dk/ase/] calculator working in the
parallel cluster environment. It is very useful in all situations where
you need to run several, independent calculations and you have a large
cluster of machines at your disposal (probably with some queuing system).

This implementation uses VASP but the code can be easily adapted for use
with other ASE calculators with minor changes.
The final goal is to provide a universal module for parallel
calculator execution in the cluster environment.

The SIESTA code by Georgios Tritsaris <gtritsaris@seas.harvard.edu>
Not fully tested after merge.

Class description

	
class parcalc.parcalc.ClusterSiesta(nodes=1, ppn=8, **kwargs)[source]

	Siesta calculator. Not fully tested by me - so this should be considered
beta quality. Nevertheless it is based on working implementation

	
class parcalc.parcalc.ClusterVasp(nodes=1, ppn=8, block=True, ncl=False, **kwargs)[source]

	Adaptation of VASP calculator to the cluster environment where you often
have to make some preparations before job submission. You can easily
adapt this class to your particular environment. It is also easy to
use this as a template for other type of calculator.

	
calc_finished()[source]

	Check if the lockfile is in the calculation directory.
It is removed by the script at the end regardless of the
success of the calculation. This is totally tied to
implementation and you need to implement your own scheme!

	
calculate(atoms)[source]

	Blocking/Non-blocking calculate method

If we are in blocking mode we just run, wait for
the job to end and read in the results. Easy ...

The non-blocking mode is a little tricky.
We need to start the job and guard against it reading
back possible old data from the directory - the queuing
system may not even started the job when we get control
back from the starting script. Thus anything we read
after invocation is potentially garbage - even if it
is a converged calculation data.

We handle it by custom run function above which
raises an exception after submitting the job.
This skips post-run processing in the calculator, preserves
the state of the data and signals here that we need to wait
for results.

	
prepare_calc_dir()[source]

	Prepare the calculation directory for VASP execution.
This needs to be re-implemented for each local setup.
The following code reflects just my particular setup.

	
run()[source]

	Blocking/Non-blocing run method.
In blocking mode it just runs parent run method.
In non-blocking mode it raises the __NonBlockingRunException
to bail out of the processing of standard calculate method
(or any other method in fact) and signal that the data is not
ready to b collected.

	
parcalc.parcalc.ParCalculate(systems, calc, cleanup=True, block=True, prefix='Calc_')[source]

	Run calculators in parallel for all systems.
Calculators are executed in isolated processes and directories.
The resulting objects are returned in the list (one per input system).

	
parcalc.parcalc.work_dir(*args, **kwds)[source]

	Context menager for executing commands in some working directory.
Returns to the previous wd when finished.

Usage:
>>> with work_dir(path):
... subprocess.call(‘git status’)

Elastic Module

This module depends on Parallel Calculator Module for parallelisation of
independent calculations.

Elastic is a module for calculation of \(C_{ij}\) components of elastic
tensor from the strain-stress relation.

The strain components here are ordered in standard way which is different
to ordering in previous versions of the code.

The ordering is: \(u_{xx}, u_{yy}, u_{zz}, u_{yz}, u_{xz}, u_{xy}\).

The general ordering of \(C_{ij}\) components is (except for triclinic symmetry and taking into account customary names of constants - e.g.
\(C_{16} \rightarrow C_{14}\)):

\[C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23},
C_{44}, C_{55}, C_{66}, C_{16}, C_{26}, C_{36}, C_{45}\]

The functions outside of the Crystal class define the symmetry of the
\(C_{ij}\) matrix. The matrix is N columns by 6 rows where the columns
corespond to independent elastic constants of the given crystal, while the rows
corespond to the canonical deformations of a crystal. The elements are the
second partial derivatives of the free energy formula for the crystal written
down as a quadratic form of the deformations with respect to elastic constant
and deformation.

Note:
The elements for deformations \(u_{xy}, u_{xz}, u_{yz}\)
have to be divided by 2 to properly match the usual definition
of elastic constants.

See: [LL] L.D. Landau, E.M. Lifszyc, “Theory of elasticity”

There is some usefull summary also at:
ScienceWorld [http://scienceworld.wolfram.com/physics/Elasticity.html]

Class description

	
class elastic.elastic.Crystal(symbols=None, positions=None, numbers=None, tags=None, momenta=None, masses=None, magmoms=None, charges=None, scaled_positions=None, cell=None, pbc=None, celldisp=None, constraint=None, calculator=None, info=None)[source]

	Backward compatibility class. To be removed later.

	
class elastic.elastic.ElasticCrystal[source]

	Mixin extension of standard ASE Atoms class designed to handle specifics of the
crystalline materials. This code should, in principle, be folded into the
Atoms class in the future. At this moment it is too early to think about it.
Additionally there are some aspects of this code which may be difficult to
harmonize with the principles of the Atoms class. I am sure it is better,
for now to leave this as a separate extension class.

Basically, this class provides set of functions concerned with derivation
of elastic properties using “finite deformation approach”
(see the documentation for physics background information).

	
get_BM_EOS(n=5, lo=0.98, hi=1.02, recalc=False, cleanup=True, mode='full', data=None)[source]

	Calculate Birch-Murnaghan Equation of State for the crystal:

\[P(V)= \frac{B_0}{B'_0}\left[
\left({\frac{V}{V_0}}\right)^{-B'_0} - 1
\right]\]

using n single-point structures ganerated from the
crystal (self) by the scan_volumes method between lo and hi
relative volumes. The BM EOS is fitted to the computed points by
least squares method. The returned value is a list of fitted
parameters: \(V_0, B_0, B_0'\) if the fit succeded.
If the fitting fails the RuntimeError(‘Calculation failed’) is reised.
The data from the calculation and fit is stored in the bm_eos and pv
members for future reference.

Note: For now you have to set up the calculator to properly
optimize the structure without changing the volume at each point.
There will be a way to specify basic types of the calculator
minimization at the later stage.

	
get_bulk_modulus(n=5, lo=0.98, hi=1.02, recalc=False)[source]

	Calculate bulk modulus using the Birch-Murnaghan equation of state
data calculated by get_BM_EOS routine (see).
The returned bulk modulus is a \(B_0\) coefficient of the B-M EOS.
The arguments are the same as in BM EOS function.

	
get_cart_deformed_cell(axis=0, size=1)[source]

	Return the cell (with atoms) deformed along one
of the cartesian directions
(0,1,2 = x,y,z ; sheers: 3,4,5 = yz, xz, xy) by
size percent.

	
get_deformed_cell(axis=0, size=1)[source]

	Return the cell (with atoms) deformed along one
cell parameter (0,1,2 = a,b,c ; 3,4,5 = alpha,beta,gamma) by
size percent or size degrees (axis/angles).

	
get_elastic_tensor(n=5, d=2, mode='full', systems=None)[source]

	Calculate elastic tensor of the crystal.
It is assumed that the crystal is converged and optimized
under intended pressure/stress.
The geometry and stress at the call point is taken as
the reference point. No additional optimization will be run.
It is also assumed that the calculator is set to pure IDOF optimization.
The size of used finite deformation is passed in d parameter as a
percentage relative deformation. The n parameter defines number of
deformed structures used in the calculation.

	
get_lattice_type()[source]

	Find the symmetry of the crystal using spglib symmetry finder.
Assign to sg_name i sg_nr members name of the space group and
its number extracted from the result. Based on the group number
identify also the lattice type (assigned to sg_type member) and
the Bravais lattice of the crystal (assigned to bravais member).
The returned value is the lattice type number.
The lattice type numbers are
(see also Crystal.ls, the numbering starts from 1):

Triclinic (1), Monoclinic (2), Orthorombic (3), Tetragonal (4)
Trigonal (5), Hexagonal (6), Cubic (7)

	
get_pressure(s=None)[source]

	Return external isotropic (hydrostatic) pressure in ASE units.
If the pressure is positive the system is under external pressure.
This is a convenience function.

	
get_strain(refcell=None)[source]

	Return the strain tensor in the Voight notation as a conventional
6-vector. The calculation is done with respect to the crystal
geometry passed in refcell parameter.

	
get_vecang_cell(uc=None)[source]

	Compute A,B,C, alpha,beta,gamma cell params
from the unit cell matrix (uc) or self.
Angles in radians.

	
scan_pressures(lo, hi, n=5)[source]

	Scan the pressure axis from lo to hi (inclusive)
using B-M EOS as the volume predictor.
Pressure (lo, hi) in GPa

	
scan_volumes(lo, hi, n)[source]

	Provide set of crystals along volume axis from lo to hi (inclusive).
No volume cell optimization is performed. Bounds are specified as
fractions (1.10 = 10% increase).

	
elastic.elastic.hexagonal(u)[source]

	The matrix is constructed based on the approach from L&L
using auxiliary coordinates: \(\xi=x+iy\), \(\eta=x-iy\).
The components are calculated from free energy using formula
introduced in Crystal symmetry and elastic matrix derivation with appropriate coordinate changes.
The order of constants is as follows:

\[C_{11}, C_{33}, C_{12}, C_{13}, C_{44}\]

	
elastic.elastic.monoclinic(u)[source]

	Monoclinic group, the ordering of constants is:

\[C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23},
C_{44}, C_{55}, C_{66}, C_{16}, C_{26}, C_{36}, C_{45}\]

	
elastic.elastic.orthorombic(u)[source]

	Equation matrix generation for the orthorombic lattice.
The order of constants is as follows:

\[C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23},
C_{44}, C_{55}, C_{66}\]

	
elastic.elastic.regular(u)[source]

	Equation matrix generation for the regular (cubic) lattice.
The order of constants is as follows:

\[C_{11}, C_{12}, C_{44}\]

	
elastic.elastic.tetragonal(u)[source]

	Equation matrix generation for the tetragonal lattice.
The order of constants is as follows:

\[C_{11}, C_{33}, C_{12}, C_{13}, C_{44}, C_{14}\]

	
elastic.elastic.triclinic(u)[source]

	Triclinic crystals.

Note: This was never tested on the real case. Beware!

The ordering of constants is:

\[C_{11}, C_{22}, C_{33},
C_{12}, C_{13}, C_{23},
C_{44}, C_{55}, C_{66},
C_{16}, C_{26}, C_{36}, C_{46}, C_{56},
C_{14}, C_{15}, C_{25}, C_{45}\]

	
elastic.elastic.trigonal(u)[source]

	The matrix is constructed based on the approach from L&L
using auxiliary coordinates: \(\xi=x+iy\), \(\eta=x-iy\).
The components are calculated from free energy using formula
introduced in Crystal symmetry and elastic matrix derivation with appropriate coordinate changes.
The order of constants is as follows:

\[C_{11}, C_{33}, C_{12}, C_{13}, C_{44}, C_{14}\]

 Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Elastic v4.0.28-2-g1c3d54c
 documentation

Installation

 [https://anaconda.org/jochym/elastic]
 [https://conda.anaconda.org/jochym]The installation procedure is quite simple if you use, highly recommended
conda package manager [http://conda.pydata.org/miniconda.html]

conda install -c jochym elastic

The above command installs elastic with all dependencies into your current
conda environment. If you want to add my anaconda.org channel into your conda
installation you need to run following command:

conda config –add channels jochym

The above method has additional benefit of providing current installation of
ASE and spglib libraries.

To install the code pedestrian way you need to install following python
packages (most, if not all, are available in major linux distributions):

	SciPy and NumPy [http://www.scipy.org/] libraries

	matplotlib [http://matplotlib.sourceforge.net/] (not strictly required,
but needed for testing and plotting)

	ASE [https://wiki.fysik.dtu.dk/ase/] system

	Some ASE calculator (VASP, GPAW, abinit, ...), but be warned that for now
the code was developed using VASP only. I will be happy to help you extending
it to other calculators.

	spglib [http://spglib.sourceforge.net/] space group library

	pyspglib [http://spglib.sourceforge.net/pyspglibForASE/] python space group module

This is highly system-dependent and I am unable to provide detailed support for
this type of install - I use conda install of ASE/elastic myself!

Some legacy installation guides [https://github.com/jochym/qe-doc/blob/master/Installation.ipynb]
which may help you with manual process could be find at the
QE-doc project pages [https://jochym.github.io/qe-doc/].

Testing

All modules have small testing sets at the end. You can run these test by
simply running each module as a python script:

python parcalc.py

which will run a short series of single-point calculations on the MgO unit
cell and plot the resulting equation of state.

The main module testing routine:

python elastic.py

will run the equation of state and elastic tensor calculations for a set of
small crystals - one for each Bravais lattice. This may take some considerable
time.

The testing routines will probably not work out of the box in your system.
Review the comments at the end of the files to make them work. I will try to make
them as setup-agnostic as possible.

Usage

In this section we assume that you have all parts of ASE properly installed and
the elastic is installed and working properly. The examples are available in the
example subdirectory [http://bazaar.launchpad.net/~jochym/elastic/trunk/files/head:/example/].
The code below use also scipy, numpy and matplotlib functions.
The VASP calculator is used in all examples (at least for now).

IPython notebook with additional example [http://nbviewer.ipython.org/github/jochym/qe-doc/blob/master/Elastic_constants.ipynb]
presents calculation using QE-util package [https://github.com/jochym/qe-util]

Simple Parallel Calculation

Once you have everything installed and running you can run your first real
calculation. The testing code at the end of the parcalc.py may be used as
an example how to do it. The first step is to import the modules to your
program (the examples here use VASP calculator):

from ase.lattice.spacegroup import crystal
from parcalc import ClusterVasp, ParCalculate
import ase.units as units
import numpy
import matplotlib.pyplot as plt

next we need to create the crystal, MgO in this case:

a = 4.194
cryst = crystal(['Mg', 'O'],
 [(0, 0, 0), (0.5, 0.5, 0.5)],
 spacegroup=225,
 cellpar=[a, a, a, 90, 90, 90])

We need a calculator for our job, here we use VASP and ClusterVasp defined
in the parcalc module. You can probably replace this calculator by any other ASE
calculator but this was not tested yet. Thus let us define the calculator:

Create the calculator running on one, eight-core node.
This is specific to the setup on my cluster.
You have to adapt this part to your environment
calc = ClusterVasp(nodes=1, ppn=8)

Assign the calculator to the crystal
cryst.set_calculator(calc)

Set the calculation parameters
calc.set(prec = 'Accurate', xc = 'PBE', lreal = False,
 nsw=30, ediff=1e-8, ibrion=2, kpts=[3,3,3])

Set the calculation mode first.
Full structure optimization in this case.
Not all calculators have this type of internal minimizer!
calc.set(isif=3)

Finally, run our first calculation. Obtain relaxed structure and
residual pressure after optimization:

print "Residual pressure: %.3f bar" % (
 cryst.get_isotropic_pressure(cryst.get_stress()))

If this returns proper pressure (close to zero) we can use the obtained
structure for further calculations. For example we can scan the volume axis to
obtain points for equation of state fitting. This will demonstrate the
ability to run several calculations in parallel - if you have a cluster of
machines at your disposal this will speed up the calculation considerably:

Lets extract optimized lattice constant.
MgO is cubic so a is a first diagonal element of lattice matrix
a=cryst.get_cell()[0,0]

Clean up the directory
calc.clean()

sys=[]
Iterate over lattice constant in the +/-5% range
for av in numpy.linspace(a*0.95,a*1.05,5):
 sys.append(crystal(['Mg', 'O'], [(0, 0, 0), (0.5, 0.5, 0.5)],
 spacegroup=225, cellpar=[av, av, av, 90, 90, 90]))

Define the template calculator for this run
We can use the calc from above. It is only used as a template.
Just change the params to fix the cell volume
calc.set(isif=2)

Run the calculation for all systems in sys in parallel
The result will be returned as list of systems res
res=ParCalculate(sys,calc)

Collect the results
v=[]
p=[]
for s in res :
 v.append(s.get_volume())
 p.append(s.get_isotropic_pressure(s.get_stress()))

Plot the result (you need matplotlib for this
plt.plot(v,p,'o')
plt.show()

If you set up everything correctly you should obtain plot similar to this:

[image: _images/plot1.png]
The pressure dependence on volume in MgO crystal (example1.py).

Birch-Murnaghan Equation of State

Let us now use the tools provided by the modules to calculate equation
of state for the crystal and verify it by plotting the data points against
fitted EOS curve. The EOS used by the module is a well established
Birch-Murnaghan formula (P - pressure, V - volume, B - parameters):

\[P(V)= \frac{B_0}{B'_0}\left[
\left({\frac{V}{V_0}}\right)^{-B'_0} - 1
\right]\]

We will start with the same crystal optimized above,
but this time we will use a new functionality imported from the elastic
module. This module acts as a plug-in for the Atoms class - extending their
range of quantities accessible for the user:

import elastic
from elastic import BMEOS

a = 4.194
cryst = crystal(['Mg', 'O'],
 [(0, 0, 0), (0.5, 0.5, 0.5)],
 spacegroup=225,
 cellpar=[a, a, a, 90, 90, 90])

Now we repeat the setup and optimization procedure from the example 1 above
but using a new Crystal class (see above we skip this part for brevity).
Then comes a new part (IDOF - Internal Degrees of Freedom):

Switch to cell shape+IDOF optimizer
calc.set(isif=4)

Calculate few volumes and fit B-M EOS to the result
Use +/-3% volume deformation and 5 data points
fit=cryst.get_BM_EOS(n=5,lo=0.97,hi=1.03)

Get the P(V) data points just calculated
pv=numpy.array(cryst.pv)

Sort data on the first column (V)
pv=pv[pv[:,0].argsort()]

Print just fitted parameters
print "V0=%.3f A^3 ; B0=%.2f GPa ; B0'=%.3f ; a0=%.5f A" % (
 fit[0], fit[1]/units.GPa, fit[2], pow(fit[0],1./3))

v0=fit[0]

B-M EOS for plotting
fitfunc = lambda p, x: [BMEOS(xv,p[0],p[1],p[2]) for xv in x]

Ranges - the ordering in pv is not guarateed at all!
In fact it may be purely random.
x=numpy.array([min(pv[:,0]),max(pv[:,0])])
y=numpy.array([min(pv[:,1]),max(pv[:,1])])

Plot the P(V) curves and points for the crystal
Plot the points
plt.plot(pv[:,0]/v0,pv[:,1],'o')

Mark the center P=0 V=V0
plt.axvline(1,ls='--')
plt.axhline(0,ls='--')

Plot the fitted B-M EOS through the points
xa=numpy.linspace(x[0],x[-1],20)
plt.plot(xa/v0,fitfunc(fit,xa),'-')
plt.draw()

If you set up everything correctly you should obtain fitted parameters printed
out in the output close to:

\[V_0 = 73.75 \text{ A}^3 \quad
B_0 = 170 \text{ GPa} \quad
B'_0 = 4.3 \quad
a_0 = 4.1936 \text{ A}\]

and the following (or similar) plot:

[image: _images/plot2.png]
The pressure dependence on volume in MgO crystal (example2.py).

Calculation of the elastic tensor

Finally let us calculate an elastic tensor for the same simple cubic crystal -
magnesium oxide (MgO). For this we need to create the crystal and optimize its
structure (see Simple Parallel Calculation above). Once we have an optimized structure we can
switch the calculator to internal degrees of freedom optimization (IDOF) and
calculate the elastic tensor:

Switch to IDOF optimizer
calc.set(isif=2)

Elastic tensor by internal routine
Cij, Bij=cryst.get_elastic_tensor(n=5,d=0.33)
print "Cij (GPa):", Cij/units.GPa

To make sure we are getting the correct answer let us make the calculation
for \(C_{11}, C{12}\) by hand. We will deform the cell along a (x) axis
by +/-0.2% and fit the 3:math:^{rd} order polynomial to the stress-strain
data. The linear component of the fit is the element of the elastic tensor:

Create 10 deformation points on the a axis
sys=[]
for d in linspace(-0.2,0.2,10):
 sys.append(cryst.get_cart_deformed_cell(axis=0,size=d))

Calculate the systems and collect the stress tensor for each system
r=ParCalculate(sys,cryst.calc)
ss=[]
for s in r:
 ss.append([s.get_strain(cryst), s.get_stress()])

Plot strain-stress relation
ss=[]
for p in r:
 ss.append([p.get_strain(cryst),p.get_stress()])
ss=array(ss)
lo=min(ss[:,0,0])
hi=max(ss[:,0,0])
mi=(lo+hi)/2
wi=(hi-lo)/2
xa=linspace(mi-1.1*wi,mi+1.1*wi, 50)
plt.plot(ss[:,0,0],ss[:,1,0],'k.')
plt.plot(ss[:,0,0],ss[:,1,1],'r.')

plt.axvline(0,ls='--')
plt.axhline(0,ls='--')

Now fit the polynomials to the data to get elastic constants
C11 component
f=numpy.polyfit(ss[:,0,0],ss[:,1,0],3)
c11=f[-2]/units.GPa

Plot the fitted function
plt.plot(xa,numpy.polyval(f,xa),'b-')

C12 component
f=numpy.polyfit(ss[:,0,0],ss[:,1,1],3)
c12=f[-2]/units.GPa

Plot the fitted function
plt.plot(xa,numpy.polyval(f,xa),'g-')

Here are the results. They should agree with the results
of the internal routine.
print 'C11 = %.3f GPa, C12 = %.3f GPa => K= %.3f GPa' % (
 c11, c12, (c11+2*c12)/3)

plt.show()

If you set up everything correctly you should obtain fitted parameters printed
out in the output close to:

\(C_{ij}\) (GPa): [319.1067 88.8528 139.35852632]

With the following result of fitting:

\(C_{11}\) = 317.958 GPa, \(C_{12}\) = 68.878 GPa => K= 151.905 GPa

and the following (or similar) plot:

[image: _images/plot3.png]
The pressure dependence on volume in MgO crystal (example3.py).

 Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Elastic v4.0.28-2-g1c3d54c
 documentation

Indices and tables

	Index

	Module Index

	Search Page

References

 [http://dx.doi.org/10.5281/zenodo.18759.]The Elastic package should be cited using one or both of the following papers
(TiC, ZrC) and its own reference.:

	[Elastic]	P.T. Jochym,
Module for calculating elastic tensor of crystals,
software, https://github.com/jochym/Elastic/,
doi:10.5281/zenodo.18759 [http://dx.doi.org/10.5281/zenodo.18759].

	[TiC]	P.T. Jochym, K. Parlinski and M. Sternik,
TiC lattice dynamics from ab initio calculations,
European Physical Journal B; 10, 1 (1999) 9-13 ;
doi:10.1007/s100510050823 [http://dx.doi.org/10.1007/s100510050823]

	[ZrC]	P.T. Jochym and K. Parlinski,
Ab initio lattice dynamics and elastic constants of ZrC,
European Physical Journal B; 15, 2 (2000) 265-268 ;
doi:10.1007/s100510051124 [http://dx.doi.org/10.1007/s100510051124]

	[LL]	L.D. Landau, E.M. Lifszyc, Theory of elasticity [http://books.google.com/books?id=tpY-VkwCkAIC], Elsevier (1986) ; ISBN: 075062633X, 9780750626330

	[SVD]	G. Golub and W. Kahan,
Calculating the Singular Values and Pseudo-Inverse of a Matrix,
J. Soc. Indus,.Appl. Math.: Ser. B 2, (1964) pp. 205-224 ;
doi:10.1137/0702016 [http://dx.doi.org/10.1137/0702016] ;
Wikipedia article on SVD [http://en.wikipedia.org/wiki/Singular_value_decomposition]

 Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Navigation

 	
 index

 	
 modules |

 	Elastic v4.0.28-2-g1c3d54c
 documentation

 Python Module Index

 e |
 p

 			

 		
 e	

 	[image: -]
 	
 elastic	

 	
 	
 elastic.elastic	

 			

 		
 p	

 	[image: -]
 	
 parcalc	

 	
 	
 parcalc.parcalc	

 Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 Navigation

 	
 index

 	
 modules |

 	Elastic v4.0.28-2-g1c3d54c
 documentation

Index

 C
 | E
 | G
 | H
 | M
 | O
 | P
 | R
 | S
 | T
 | W

C

 	

 	calc_finished() (parcalc.parcalc.ClusterVasp method)

 	calculate() (parcalc.parcalc.ClusterVasp method)

 	ClusterSiesta (class in parcalc.parcalc)

 	

 	ClusterVasp (class in parcalc.parcalc)

 	Crystal (class in elastic.elastic)

E

 	

 	elastic.elastic (module)

 	

 	ElasticCrystal (class in elastic.elastic)

G

 	

 	get_BM_EOS() (elastic.elastic.ElasticCrystal method)

 	get_bulk_modulus() (elastic.elastic.ElasticCrystal method)

 	get_cart_deformed_cell() (elastic.elastic.ElasticCrystal method)

 	get_deformed_cell() (elastic.elastic.ElasticCrystal method)

 	get_elastic_tensor() (elastic.elastic.ElasticCrystal method)

 	

 	get_lattice_type() (elastic.elastic.ElasticCrystal method)

 	get_pressure() (elastic.elastic.ElasticCrystal method)

 	get_strain() (elastic.elastic.ElasticCrystal method)

 	get_vecang_cell() (elastic.elastic.ElasticCrystal method)

H

 	

 	hexagonal() (in module elastic.elastic)

M

 	

 	monoclinic() (in module elastic.elastic)

O

 	

 	orthorombic() (in module elastic.elastic)

P

 	

 	parcalc.parcalc (module)

 	ParCalculate() (in module parcalc.parcalc)

 	

 	prepare_calc_dir() (parcalc.parcalc.ClusterVasp method)

R

 	

 	regular() (in module elastic.elastic)

 	

 	run() (parcalc.parcalc.ClusterVasp method)

S

 	

 	scan_pressures() (elastic.elastic.ElasticCrystal method)

 	

 	scan_volumes() (elastic.elastic.ElasticCrystal method)

T

 	

 	tetragonal() (in module elastic.elastic)

 	triclinic() (in module elastic.elastic)

 	

 	trigonal() (in module elastic.elastic)

W

 	

 	work_dir() (in module parcalc.parcalc)

 Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Elastic v4.0.28-2-g1c3d54c
 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Elastic v4.0.28-2-g1c3d54c
 documentation »

 All modules for which code is available

		elastic.elastic

		parcalc.parcalc

 © Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

examples.html

 Navigation

 		
 index

 		
 modules |

 		Elastic v4.0.28-2-g1c3d54c
 documentation »

 © Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

_modules/elastic/elastic.html

 Navigation

 		
 index

 		
 modules |

 		Elastic v4.0.28-2-g1c3d54c
 documentation »

 		Module code »

 Source code for elastic.elastic

#!/usr/bin/python
-*- coding: utf-8 -*-
#
Copyright 1998-2011 by Paweł T. Jochym <pawel.jochym@ifj.edu.pl>
#
This file is part of Elastic.

Elastic is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Elastic is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Elastic. If not, see <http://www.gnu.org/licenses/>.

'''

.. _elastic-mod:

Elastic Module
^^^^^^^^^^^^^^

This module depends on :ref:`par-calc-mod` for parallelisation of
independent calculations.

Elastic is a module for calculation of :math:`C_{ij}` components of elastic
tensor from the strain-stress relation.

The strain components here are ordered in standard way which is different
to ordering in previous versions of the code.

The ordering is: :math:`u_{xx}, u_{yy}, u_{zz}, u_{yz}, u_{xz}, u_{xy}`.

The general ordering of :math:`C_{ij}` components is (except for triclinic symmetry and taking into account customary names of constants - e.g.
:math:`C_{16} \\rightarrow C_{14}`):

.. math::
 C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23},
 C_{44}, C_{55}, C_{66}, C_{16}, C_{26}, C_{36}, C_{45}

The functions outside of the Crystal class define the symmetry of the
:math:`C_{ij}` matrix. The matrix is N columns by 6 rows where the columns
corespond to independent elastic constants of the given crystal, while the rows
corespond to the canonical deformations of a crystal. The elements are the
second partial derivatives of the free energy formula for the crystal written
down as a quadratic form of the deformations with respect to elastic constant
and deformation.

Note:
The elements for deformations :math:`u_{xy}, u_{xz}, u_{yz}`
have to be divided by 2 to properly match the usual definition
of elastic constants.

See: [LL]_ L.D. Landau, E.M. Lifszyc, "Theory of elasticity"

There is some usefull summary also at:
`ScienceWorld <http://scienceworld.wolfram.com/physics/Elasticity.html>`_

Class description
"""""""""""""""""
'''

from __future__ import print_function, division, absolute_import

import re
import sys
import string

import ase.io
from ase.atoms import Atoms

try :
 # Try new release of spglib
 import spglib as spg
except ImportError :
 # Old naming scheme
 from pyspglib import spglib as spg

from scipy.linalg import norm, lstsq
from scipy import optimize
from numpy.linalg import inv
from numpy import dot, diag, ones, reshape, linspace, array, mean
from math import acos, pi, cos, sin, tan
import ase.units as units

def BMEOS(v,v0,b0,b0p):
 return (b0/b0p)*(pow(v0/v,b0p) - 1)

def ctg(x):
 return cos(x)/sin(x)

def csc(x):
 return 1/sin(x)

[docs]def regular(u):
 '''
 Equation matrix generation for the regular (cubic) lattice.
 The order of constants is as follows:

 .. math::
 C_{11}, C_{12}, C_{44}
 '''
 uxx, uyy, uzz, uyz, uxz, uxy = u[0],u[1],u[2],u[3],u[4],u[5]
 return array([
 [uxx, uyy + uzz, 0],
 [uyy, uxx + uzz, 0],
 [uzz, uxx + uyy, 0],
 [0, 0, 2*uyz],
 [0, 0, 2*uxz],
 [0, 0, 2*uxy]])

[docs]def tetragonal(u):
 '''
 Equation matrix generation for the tetragonal lattice.
 The order of constants is as follows:

 .. math::
 C_{11}, C_{33}, C_{12}, C_{13}, C_{44}, C_{14}
 '''
 uxx, uyy, uzz, uyz, uxz, uxy = u[0],u[1],u[2],u[3],u[4],u[5]
 return array(
 [[uxx, 0, uyy, uzz, 0, 0],
 [uyy, 0, uxx, uzz, 0, 0],
 [0, uzz, 0, uxx+uyy, 0, 0],
 [0, 0, 0, 0, 0, 2*uxy],
 [0, 0, 0, 0, 2*uxz, 0],
 [0, 0, 0, 0, 2*uyz, 0]])

[docs]def orthorombic(u):
 '''
 Equation matrix generation for the orthorombic lattice.
 The order of constants is as follows:

 .. math::
 C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23},
 C_{44}, C_{55}, C_{66}
 '''
 uxx, uyy, uzz, uyz, uxz, uxy = u[0],u[1],u[2],u[3],u[4],u[5]
 return array(
 [[uxx, 0, 0, uyy, uzz, 0, 0, 0, 0],
 [0, uyy, 0, uxx, 0, uzz, 0, 0, 0],
 [0, 0, uzz, 0, uxx, uyy, 0, 0, 0],
 [0, 0, 0, 0, 0, 0,2*uyz, 0, 0],
 [0, 0, 0, 0, 0, 0, 0,2*uxz, 0],
 [0, 0, 0, 0, 0, 0, 0, 0,2*uxy]])

[docs]def trigonal(u):
 '''
 The matrix is constructed based on the approach from L&L
 using auxiliary coordinates: :math:`\\xi=x+iy`, :math:`\\eta=x-iy`.
 The components are calculated from free energy using formula
 introduced in :ref:`symmetry` with appropriate coordinate changes.
 The order of constants is as follows:

 .. math::
 C_{11}, C_{33}, C_{12}, C_{13}, C_{44}, C_{14}
 '''
 #TODO: Not tested yet.
 #TODO: There is still some doubt about the :math:`C_{14}` constant.
 uxx, uyy, uzz, uyz, uxz, uxy = u[0],u[1],u[2],u[3],u[4],u[5]
 return array(
 [[uxx, 0, uyy, uzz, 0, 2*uxz],
 [uyy, 0, uxx, uzz, 0, -2*uxz],
 [0, uzz, 0, uxx+uyy, 0, 0],
 [0, 0, 0, 0, 2*uyz, -4*uxy],
 [0, 0, 0, 0, 2*uxz, 2*(uxx-uyy)],
 [2*uxy, 0, -2*uxy, 0, 0, -4*uyz]])

[docs]def hexagonal(u):
 '''
 The matrix is constructed based on the approach from L&L
 using auxiliary coordinates: :math:`\\xi=x+iy`, :math:`\\eta=x-iy`.
 The components are calculated from free energy using formula
 introduced in :ref:`symmetry` with appropriate coordinate changes.
 The order of constants is as follows:

 .. math::
 C_{11}, C_{33}, C_{12}, C_{13}, C_{44}
 '''
 #TODO: Still needs good verification
 uxx, uyy, uzz, uyz, uxz, uxy = u[0],u[1],u[2],u[3],u[4],u[5]
 return array(
 [[uxx, 0, uyy, uzz, 0],
 [uyy, 0, uxx, uzz, 0],
 [0, uzz, 0, uxx+uyy, 0],
 [0, 0, 0, 0, 2*uyz],
 [0, 0, 0, 0, 2*uxz],
 [2*uxy, 0, -2*uxy, 0, 0]])

[docs]def monoclinic(u):
 '''
 Monoclinic group, the ordering of constants is:

 .. math::
 C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23},
 C_{44}, C_{55}, C_{66}, C_{16}, C_{26}, C_{36}, C_{45}
 '''

 uxx, uyy, uzz, uyz, uxz, uxy = u[0],u[1],u[2],u[3],u[4],u[5]
 return array(
 [[uxx, 0, 0,uyy,uzz, 0, 0, 0, 0,uxy, 0, 0, 0],
 [0,uyy, 0,uxx, 0,uzz, 0, 0, 0, 0,uxy, 0, 0],
 [0, 0,uzz, 0,uxx,uyy, 0, 0, 0, 0, 0,uxy, 0],
 [0, 0, 0, 0, 0, 0,2*uyz, 0, 0, 0, 0, 0,uxz],
 [0, 0, 0, 0, 0, 0, 0,2*uxz, 0, 0, 0, 0,uyz],
 [0, 0, 0, 0, 0, 0, 0, 0,2*uxy,uxx,uyy,uzz, 0]])

[docs]def triclinic(u):
 '''
 Triclinic crystals.

 Note: This was never tested on the real case. Beware!

 The ordering of constants is:

 .. math::
 C_{11}, C_{22}, C_{33},
 C_{12}, C_{13}, C_{23},
 C_{44}, C_{55}, C_{66},
 C_{16}, C_{26}, C_{36}, C_{46}, C_{56},
 C_{14}, C_{15}, C_{25}, C_{45}
 '''
 # Based on the monoclinic matrix and not tested on real case.
 # If you have test cases for this symmetry send them to the author.
 uxx, uyy, uzz, uyz, uxz, uxy = u[0],u[1],u[2],u[3],u[4],u[5]
 return array(
 [[uxx, 0, 0,uyy,uzz, 0, 0, 0, 0,uxy, 0, 0, 0, 0,uyz,uxz, 0, 0],
 [0,uyy, 0,uxx, 0,uzz, 0, 0, 0, 0,uxy, 0, 0, 0, 0, 0,uxz, 0],
 [0, 0,uzz, 0,uxx,uyy, 0, 0, 0, 0, 0,uxy, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0,2*uyz, 0, 0, 0, 0, 0,uxy, 0,uxx, 0, 0,uxz],
 [0, 0, 0, 0, 0, 0, 0,2*uxz, 0, 0, 0, 0, 0,uxy, 0,uxx,uyy,uyz],
 [0, 0, 0, 0, 0, 0, 0, 0,2*uxy,uxx,uyy,uzz,uyz,uxz, 0, 0, 0, 0]])

#def ParCalculate(systems,calc):
for s in systems:
s.set_calculator(calc.copy())
calc.ParallelCalculate(systems,properties=['stress'])
return systems

from parcalc import ParCalculate

class CrystalInitError(Exception):
 def __str__(self):
 return '''The Crystal class should NEVER be created by itself - it is intended as
 a mix-in base class for the Atoms class. Thus this constructor
 just prints the error message and bails out.'''

[docs]class Crystal(Atoms):
 '''Backward compatibility class. To be removed later.'''
 pass

[docs]class ElasticCrystal:
 '''
 Mixin extension of standard ASE Atoms class designed to handle specifics of the
 crystalline materials. This code should, in principle, be folded into the
 Atoms class in the future. At this moment it is too early to think about it.
 Additionally there are some aspects of this code which may be difficult to
 harmonize with the principles of the Atoms class. I am sure it is better,
 for now to leave this as a separate extension class.

 Basically, this class provides set of functions concerned with derivation
 of elastic properties using "finite deformation approach"
 (see the documentation for physics background information).
 '''

 def __init__(self):
 '''
 Dummy constructor for the Crystal class.
 The class should NEVER be created by itself - it is intended as
 a mix-in base class for the Atoms class. Thus this constructor
 just prints the error message and bails out.
 '''
 print('''Crystal class is not intended to be used directly!
 You should never call it constructor. Read the docs or just
 import elastic module and enjoy the new functionality of
 the Atoms class!. Since this program is not going to work
 anyway I am bailing out right now.
 ''')
 raise CrystalInitError

[docs] def get_lattice_type(self):
 '''
 Find the symmetry of the crystal using spglib symmetry finder.
 Assign to sg_name i sg_nr members name of the space group and
 its number extracted from the result. Based on the group number
 identify also the lattice type (assigned to sg_type member) and
 the Bravais lattice of the crystal (assigned to bravais member).
 The returned value is the lattice type number.
 The lattice type numbers are
 (see also Crystal.ls, the numbering starts from 1):

 Triclinic (1), Monoclinic (2), Orthorombic (3), Tetragonal (4)
 Trigonal (5), Hexagonal (6), Cubic (7)
 '''
 # Table of lattice types and correcponding group numbers dividing
 # the ranges. See get_lattice_type method for precise definition.

 lattice_types=[
 [3, "Triclinic"],
 [16, "Monoclinic"],
 [75, "Orthorombic"],
 [143, "Tetragonal"],
 [168, "Trigonal"],
 [195, "Hexagonal"],
 [231, "Cubic"]
]

 sg=spg.get_spacegroup(self)
 m=re.match('([A-Z].*\\b)\s*\(([0-9]*)\)',sg)
 self.sg_name=m.group(1)
 self.sg_nr=int(m.group(2))

 for n,l in enumerate(lattice_types) :
 if self.sg_nr < l[0] :
 lattice=l[1]
 lattype=n+1
 break
 self.sg_type=lattype
 self.bravais=lattice
 return lattype

[docs] def get_bulk_modulus(self,n=5, lo=0.98, hi=1.02, recalc=False):
 '''
 Calculate bulk modulus using the Birch-Murnaghan equation of state
 data calculated by get_BM_EOS routine (see).
 The returned bulk modulus is a :math:`B_0` coefficient of the B-M EOS.
 The arguments are the same as in BM EOS function.
 '''
 if self._calc is None:
 raise RuntimeError('Crystal object has no calculator.')

 if recalc or getattr(self,'bm_eos',None) is None :
 self.get_BM_EOS(n,lo,hi,recalc)
 self.bulk_modulus=self.bm_eos[1]
 return self.bulk_modulus

[docs] def get_pressure(self,s=None):
 '''
 Return *external* isotropic (hydrostatic) pressure in ASE units.
 If the pressure is positive the system is under external pressure.
 This is a convenience function.
 '''
 if s is None :
 s=self.get_stress()
 return -mean(s[:3])

[docs] def get_BM_EOS(self,n=5, lo=0.98, hi=1.02, recalc=False, cleanup=True, mode='full', data=None):
 """
 Calculate Birch-Murnaghan Equation of State for the crystal:

 .. math::
 P(V)= \\frac{B_0}{B'_0}\\left[
 \\left({\\frac{V}{V_0}}\\right)^{-B'_0} - 1
 \\right]

 using n single-point structures ganerated from the
 crystal (self) by the scan_volumes method between lo and hi
 relative volumes. The BM EOS is fitted to the computed points by
 least squares method. The returned value is a list of fitted
 parameters: :math:`V_0, B_0, B_0'` if the fit succeded.
 If the fitting fails the RuntimeError('Calculation failed') is reised.
 The data from the calculation and fit is stored in the bm_eos and pv
 members for future reference.

 Note: For now you have to set up the calculator to properly
 optimize the structure without changing the volume at each point.
 There will be a way to specify basic types of the calculator
 minimization at the later stage.
 """
 if self._calc is None:
 raise RuntimeError('Crystal object has no calculator.')

 if getattr(self,'bm_eos',None) is None or recalc :
 # NOTE: The calculator should properly minimize the energy
 # at each volume by optimizing the internal degrees of freedom
 # in the cell and/or cell shape without touching the volume.
 # TODO: Provide api for specifying IDOF and Full optimization
 # calculators. Maybe just calc_idof and calc_full members?
 if data is not None : # analyse results of previous calc
 res=data
 elif mode=='full' : # Make blocking calc of everything
 res=ParCalculate(self.scan_volumes(lo,hi,n),self.get_calculator(),cleanup=cleanup)
 elif mode=='gener' : # generate data for separate calc
 return self.scan_volumes(lo,hi,n)
 else :
 print('Error: Unrecognized mode and no data. Read the docs!')
 return

 #for r in res :
 #print(r.get_volume(), self.get_pressure(), r.get_cell())

 pvdat=array([[r.get_volume(),
 self.get_pressure(r.get_stress()),
 norm(r.get_cell()[:,0]),
 norm(r.get_cell()[:,1]),
 norm(r.get_cell()[:,2])] for r in res])
 #print(pvdat)

 # Fitting functions
 fitfunc = lambda p, x: [BMEOS(xv,p[0],p[1],p[2]) for xv in x]
 errfunc = lambda p, x, y: fitfunc(p, x) - y

 # Estimate the initial guess assuming b0p=1
 # Limiting volumes
 v1=min(pvdat[:,0])
 v2=max(pvdat[:,0])
 # The pressure is falling with the growing volume
 p2=min(pvdat[:,1])
 p1=max(pvdat[:,1])
 b0=(p1*v1-p2*v2)/(v2-v1)
 v0=v1*(p1+b0)/b0
 # Initial guess
 p0=[v0,b0,1]
 #Fitting
 #print(p0)
 p1, succ = optimize.leastsq(errfunc, p0[:], args=(pvdat[:,0],pvdat[:,1]))
 if not succ :
 raise RuntimeError('Calculation failed')
 self.bm_eos=p1
 self.pv=pvdat
 return self.bm_eos

[docs] def get_elastic_tensor(self, n=5, d=2, mode='full', systems=None):
 '''
 Calculate elastic tensor of the crystal.
 It is assumed that the crystal is converged and optimized
 under intended pressure/stress.
 The geometry and stress at the call point is taken as
 the reference point. No additional optimization will be run.
 It is also assumed that the calculator is set to pure IDOF optimization.
 The size of used finite deformation is passed in d parameter as a
 percentage relative deformation. The n parameter defines number of
 deformed structures used in the calculation.
 '''
 # TODO: Provide API to enforce calculator selection

 # Deformation look-up table
 # Perhaps the number of deformations for trigonal
 # system could be reduced to [0,3] but better safe then sorry
 deform={
 "Cubic": [[0,3], regular],
 "Hexagonal": [[0,2,3,5], hexagonal],
 "Trigonal": [[0,1,2,3,4,5], trigonal],
 "Tetragonal": [[0,2,3,5], tetragonal],
 "Orthorombic": [[0,1,2,3,4,5], orthorombic],
 "Monoclinic": [[0,1,2,3,4,5], monoclinic],
 "Triclinic": [[0,1,2,3,4,5], triclinic]
 }

 self.get_lattice_type()
 # Decide which deformations should be used
 axis, symm=deform[self.bravais]

 if mode!='restart':
 # Generate deformations if we are not in restart mode
 systems=[]
 for a in axis :
 if a <3 : # tetragonal deformation
 for dx in linspace(-d,d,n):
 systems.append(self.get_cart_deformed_cell(axis=a, size=dx))
 elif a<6 : # sheer deformation (skip the zero angle)
 for dx in linspace(d/10.0,d,n):
 systems.append(self.get_cart_deformed_cell(axis=a, size=dx))

 # Just generate deformations for manual calculation
 if mode=='deformations' :
 return systems

 if mode!='restart' :
 # Run the calculation if we are not restarting
 r=ParCalculate(systems,self.get_calculator())
 else :
 r=systems

 ul=[]
 sl=[]
 p=self.get_pressure()
 for g in r:
 ul.append(g.get_strain(self))
 # Remove the pressure from the stress tensor
 sl.append(g.get_stress()-array([p,p,p,0,0,0]))
 eqm=array(map(symm,ul))
 #print(eqm[0].shape, eqm.shape)
 eqm=reshape(eqm,(eqm.shape[0]*eqm.shape[1],eqm.shape[2]))
 #print(eqm)
 slm=reshape(array(sl),(-1,))
 #print(eqm.shape, slm.shape)
 #print(slm)
 Bij = lstsq(eqm,slm)
 #print(Bij[0] / units.GPa)
 # Calculate elastic constants from Birch coeff.
 # TODO: Check the sign of the pressure array in the B <=> C relation
 if (symm == orthorombic):
 Cij = Bij[0] - array([-p,-p,-p, p, p, p,-p,-p,-p])
 elif (symm == tetragonal):
 Cij = Bij[0] - array([-p,-p, p, p,-p,-p])
 elif (symm == regular):
 Cij = Bij[0] - array([-p, p,-p])
 elif (symm == trigonal):
 Cij = Bij[0] - array([-p,-p,p,p,-p,p])
 elif (symm == hexagonal):
 Cij = Bij[0] - array([-p,-p,p,p,-p])
 elif (symm == monoclinic):
 #TODO: verify this pressure array
 Cij = Bij[0] - array([-p,-p,-p, p, p, p,-p,-p,-p, p, p, p, p])
 elif (symm == triclinic):
 #TODO: verify this pressure array
 Cij = Bij[0] - array([-p,-p,-p, p, p, p,-p,-p,-p, p, p, p, p, p, p, p, p, p])
 return Cij, Bij

[docs] def scan_pressures(self, lo, hi, n=5):
 '''
 Scan the pressure axis from lo to hi (inclusive)
 using B-M EOS as the volume predictor.
 Pressure (lo, hi) in GPa
 '''
 # Inverse B-M EOS to get volumes from pressures
 # This will work only in limited pressure range p>-B/B'.
 # Warning! Relative, the V0 prefactor is removed.
 invbmeos = lambda b, bp, x: array([pow(b/(bp*xv+b),1/(3*bp)) for xv in x])

 eos=self.get_BM_EOS()

 # Limit negative pressures to 90% of the singularity value.
 # Beyond this B-M EOS is bound to be wrong anyway.
 lo=max(lo,-0.9*eos[1]/eos[2])

 scale=(eos[0]/self.get_volume())*invbmeos(eos[1], eos[2],
 linspace(lo,hi,num=n))
 #print(scale)
 uc=self.get_cell()
 sys=[Atoms(self) for s in scale]
 for n, s in enumerate(scale):
 sys[n].set_cell(s*uc,scale_atoms=True)

 return sys

[docs] def scan_volumes(self, lo, hi, n):
 '''
 Provide set of crystals along volume axis from lo to hi (inclusive).
 No volume cell optimization is performed. Bounds are specified as
 fractions (1.10 = 10% increase).
 '''
 scale=linspace(lo,hi,num=n)
 uc=self.get_cell()
 sys=[Atoms(self) for s in scale]
 for n, s in enumerate(scale):
 sys[n].set_cell(s*uc,scale_atoms=True)

 return sys

[docs] def get_vecang_cell(self, uc=None):
 '''
 Compute A,B,C, alpha,beta,gamma cell params
 from the unit cell matrix (uc) or self.
 Angles in radians.
 '''
 if uc is None :
 uc=self.get_cell()
 ucv=[uc[i,:]/norm(uc[i,:]) for i in range(3)]
 uca=[acos(dot(ucv[(i+1)%3],ucv[(i+2)%3])) for i in range(3)]
 return [norm(uc[i,:]) for i in range(3)] + uca

[docs] def get_deformed_cell(self, axis=0, size=1):
 '''
 Return the cell (with atoms) deformed along one
 cell parameter (0,1,2 = a,b,c ; 3,4,5 = alpha,beta,gamma) by
 size percent or size degrees (axis/angles).
 '''
 cryst=Crystal(self)
 if axis < 3 :
 uc[axis,:]=(1+size/100.0)*uc[axis,:]
 else :
 (a,b,c,alp,bet,gam)=cryst.get_vecang_cell()
 d=array([0.0, 0.0, 0.0])
 d[axis-3]=pi*size/180
 (alp,bet,gam)=array((alp,bet,gam))+d
 t=1 - (ctg(bet)*ctg(gam)-cos(alp)*csc(bet)*csc(gam))**2;
 if t<0.0 :
 print('''
 The parameters (alpha,beta,gamma)=(%f,%f,%f) are probably
 incorrect and lead to imaginary coordinates.
 This range of parameters is unsupported by this program
 (and is, let me say, very strange for a crystal).
 Cennot continue, bye.''' % (alp,bet,gam))
 raise ValueError
 else :
 uc=[[a,0.0,0.0],
 [b*cos(gam), b*sin(gam), 0],
 [c*cos(bet),
 c*(cos(alp)/sin(gam) - cos(bet)*ctg(gam)),
 c*sin(bet)*sqrt(t)]]
 cryst.set_cell(uc, scale_atoms=True)
 #print(cryst.get_cell())
 #print(uc)
 return cryst

[docs] def get_cart_deformed_cell(self, axis=0, size=1):
 '''
 Return the cell (with atoms) deformed along one
 of the cartesian directions
 (0,1,2 = x,y,z ; sheers: 3,4,5 = yz, xz, xy) by
 size percent.
 '''
 cryst=Crystal(self)
 uc=cryst.get_cell()
 l=size/100.0
 L=diag(ones(3))
 if axis < 3 :
 L[axis,axis]+=l
 else :
 if axis==3 :
 L[1,2]+=l
 elif axis==4 :
 L[0,2]+=l
 else :
 L[0,1]+=l
 uc=dot(uc,L)
 cryst.set_cell(uc, scale_atoms=True)
 #print(cryst.get_cell())
 #print(uc)
 return cryst

[docs] def get_strain(self,refcell=None):
 '''
 Return the strain tensor in the Voight notation as a conventional
 6-vector. The calculation is done with respect to the crystal
 geometry passed in refcell parameter.
 '''
 if refcell is None :
 refcell=self
 du=self.get_cell()-refcell.get_cell()
 m=refcell.get_cell()
 m=inv(m)
 u=dot(m,du)
 u=(u+u.T)/2
 return array([u[0,0], u[1,1], u[2,2], u[2,1], u[2,0], u[1,0]])

 © Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

_static/comment-bright.png

_images/plot1.png
400000

300000

200000

100000

—100000

fZOOOO%

0

65

70

75

80

85

90

_images/plot2.png
0.15

0.10

0.05
70'18.90

-0.05

110

1.05

0.95

_modules/parcalc/parcalc.html

 Navigation

 		
 index

 		
 modules |

 		Elastic v4.0.28-2-g1c3d54c
 documentation »

 		Module code »

 Source code for parcalc.parcalc

#!/usr/bin/python
-*- coding: utf-8 -*-
#
Copyright 2011 by Pawel T. Jochym <pawel.jochym@ifj.edu.pl>
#
This file is part of Elastic.

Elastic is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Elastic is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Elastic. If not, see <http://www.gnu.org/licenses/>.

'''

.. _par-calc-mod:

Parallel Calculator Module
^^^^^^^^^^^^^^^^^^^^^^^^^^

Parallel calculator module is an extension of the standard
`ASE <https://wiki.fysik.dtu.dk/ase/>`_ calculator working in the
parallel cluster environment. It is very useful in all situations where
you need to run several, independent calculations and you have a large
cluster of machines at your disposal (probably with some queuing system).

This implementation uses VASP but the code can be easily adapted for use
with other ASE calculators with minor changes.
The final goal is to provide a universal module for parallel
calculator execution in the cluster environment.

The SIESTA code by Georgios Tritsaris <gtritsaris@seas.harvard.edu>
Not fully tested after merge.

Class description
"""""""""""""""""
'''

from __future__ import print_function, division

import ase
from ase.calculators.vasp import Vasp
from ase.calculators.siesta import Siesta

try : # Python3
 from queue import Empty
except ImportError : # Python2
 from Queue import Empty

from multiprocessing import Process, Queue

import time
import os
import tempfile
import shutil
from copy import deepcopy
from subprocess import check_output
from contextlib import contextmanager

class _NonBlockingRunException(Exception):
 '''
 Internal exception. Should never be propagated outside.
 '''
 def __str__(self):
 return '''The __NonBlockingRunException should be caught inside
 the calculator class. If you got it outside it is a bug.
 Contact the author and/or submit a bug ticket at github.'''

from traceback import print_stack

@contextmanager
[docs]def work_dir(path):
 '''
 Context menager for executing commands in some working directory.
 Returns to the previous wd when finished.

 Usage:
 >>> with work_dir(path):
 ... subprocess.call('git status')

 '''
 starting_directory = os.getcwd()
 try:
 os.chdir(path)
 yield
 finally:
 os.chdir(starting_directory)

[docs]class ClusterVasp(Vasp):
 '''
 Adaptation of VASP calculator to the cluster environment where you often
 have to make some preparations before job submission. You can easily
 adapt this class to your particular environment. It is also easy to
 use this as a template for other type of calculator.
 '''

 def __init__(self, nodes=1, ppn=8, block=True, ncl=False, **kwargs):
 Vasp.__init__(self, **kwargs)
 self.nodes=nodes
 self.ppn=ppn
 self.block=block
 self.ncl=ncl
 self.calc_running=False
 self.working_dir=os.getcwd()

[docs] def prepare_calc_dir(self):
 '''
 Prepare the calculation directory for VASP execution.
 This needs to be re-implemented for each local setup.
 The following code reflects just my particular setup.
 '''
 with open("vasprun.conf","w") as f:
 f.write('NODES="nodes=%s:ppn=%d"\n' % (self.nodes, self.ppn))
 f.write('BLOCK=%d\n' % (self.block,))
 if self.ncl :
 f.write('NCL=%d\n' % (1,))

 #print(self.nodes, self.ppn)

[docs] def calc_finished(self):
 '''
 Check if the lockfile is in the calculation directory.
 It is removed by the script at the end regardless of the
 success of the calculation. This is totally tied to
 implementation and you need to implement your own scheme!
 '''
 #print_stack(limit=5)
 if not self.calc_running :
 #print('Calc running:',self.calc_running)
 return True
 else:
 # The calc is marked as running check if this is still true
 # We do it by external scripts. You need to write these
 # scripts for your own system.
 # See examples/scripts directory for examples.
 with work_dir(self.working_dir) :
 o=check_output(['check-job'])
 #print('Status',o)
 if o[0] in b'R' :
 # Still running - we do nothing to preserve the state
 return False
 else :
 # The job is not running maybe it finished maybe crashed
 # We hope for the best at this point ad pass to the
 # Standard update function
 return True

 def set(self,**kwargs):
 if 'block' in kwargs :
 self.block=kwargs['block']
 del kwargs['block']
 else :
 self.block=True

 if 'ncl' in kwargs :
 self.ncl=kwargs['ncl']
 del kwargs['ncl']
 else :
 self.ncl=False
 Vasp.set(self, **kwargs)

 def clean(self):
 with work_dir(self.working_dir) :
 Vasp.clean(self)

 def update(self, atoms):
 if self.calc_running :
 # we have started the calculation and have
 # nothing to read really. But we need to check
 # first if this is still true.
 if self.calc_finished():
 # We were running but recently finished => read the results
 # This is a piece of copy-and-paste programming
 # This is a copy of code from Vasp.calculate
 self.calc_running=False
 with work_dir(self.working_dir) :
 atoms_sorted = ase.io.read('CONTCAR', format='vasp')
 if self.int_params['ibrion'] > -1 and self.int_params['nsw'] > 0:
 # Update atomic positions and unit cell with the ones read
 # from CONTCAR.
 atoms.positions = atoms_sorted[self.resort].positions
 atoms.cell = atoms_sorted.cell
 self.converged = self.read_convergence()
 Vasp.set_results(self,atoms)
 return
 else :
 return
 # We are not in the middle of calculation.
 # Update as normal
 Vasp.update(self, atoms)

 def set_results(self, atoms):
 with work_dir(self.working_dir) :
 #print('set_results')
 Vasp.set_results(self, atoms)

[docs] def run(self):
 '''
 Blocking/Non-blocing run method.
 In blocking mode it just runs parent run method.
 In non-blocking mode it raises the __NonBlockingRunException
 to bail out of the processing of standard calculate method
 (or any other method in fact) and signal that the data is not
 ready to b collected.
 '''
 # This is only called from self.calculate - thus
 # we do not need to change to working_dir
 # since calculate already did
 Vasp.run(self)
 if not self.block :
 #print('Interrupt processing of calculate', os.getcwd())
 raise _NonBlockingRunException

[docs] def calculate(self, atoms):
 '''
 Blocking/Non-blocking calculate method

 If we are in blocking mode we just run, wait for
 the job to end and read in the results. Easy ...

 The non-blocking mode is a little tricky.
 We need to start the job and guard against it reading
 back possible old data from the directory - the queuing
 system may not even started the job when we get control
 back from the starting script. Thus anything we read
 after invocation is potentially garbage - even if it
 is a converged calculation data.

 We handle it by custom run function above which
 raises an exception after submitting the job.
 This skips post-run processing in the calculator, preserves
 the state of the data and signals here that we need to wait
 for results.
 '''

 with work_dir(self.working_dir) :
 self.prepare_calc_dir()
 self.calc_running=True
 #print('Run VASP.calculate')
 try :
 Vasp.calculate(self, atoms)
 self.calc_running=False
 #print('VASP.calculate returned')
 except _NonBlockingRunException as e:
 # We have nothing else to docs
 # until the job finishes
 #print('Interrupted ', self.working_dir, os.getcwd())
 pass

[docs]class ClusterSiesta(Siesta):
 '''
 Siesta calculator. Not fully tested by me - so this should be considered
 beta quality. Nevertheless it is based on working implementation
 '''
 def __init__(self, nodes=1, ppn=8, **kwargs):
 Siesta.__init__(self, **kwargs)
 self.nodes=nodes
 self.ppn=ppn

 def prepare_calc_dir(self):
 with open("siestarun.conf","w") as f:
 f.write('NODES="nodes=%d:ppn=%d"' % (self.nodes, self.ppn))
 #print(self.nodes, self.ppn)

 def get_potential_energy(self, atoms):
 self.prepare_calc_dir()
 Siesta.get_potential_energy(self, atoms)

 def clean(self):
 self.converged = False
 return

verbose=True

class __PCalcProc(Process):
 '''
 Internal helper class representing the calculation process isolated
 from the rest of the ASE script. The process (not thread) runs in
 the separate directory, created on-the-fly and removed at the end
 if the cleanup is true and we are in blocking (default) mode.
 In this mode it is vital for the calculator to read in all the
 results after the run since the files will be removed as soon as the
 "calculate" function terminates. You can pass False to the cleanup
 argument to prevent the clean-up. This is very usefull for debuging.

 The process waits without any time-out for the calculation to finish.
 This is great for short and simple calculations and quick testing.
 You run the job and get back your results.
 '''

 def __init__(self, iq, oq, calc, prefix, cleanup=True):
 Process.__init__(self)
 self.calc=calc
 self.basedir=os.getcwd()
 self.place=tempfile.mkdtemp(prefix=prefix, dir=self.basedir)
 self.iq=iq
 self.oq=oq
 self.CleanUp=cleanup

 def run(self):
 with work_dir(self.place) :
 n,system=self.iq.get()
 system.set_calculator(deepcopy(self.calc))
 system.get_calculator().block=True
 system.get_calculator().working_dir=self.place
 #print("Start at :", self.place)
 if hasattr(self.calc, 'name') and self.calc.name=='Siesta':
 system.get_potential_energy()
 else:
 system.get_calculator().calculate(system)

 #print("Finito: ", os.getcwd(), system.get_volume(), system.get_pressure())
 self.oq.put([n,system])
 if self.CleanUp :
 system.get_calculator().clean()
 os.chdir(self.basedir)
 shutil.rmtree(self.place, ignore_errors=True)

[docs]def ParCalculate(systems,calc,cleanup=True,block=True,prefix="Calc_"):
 '''
 Run calculators in parallel for all systems.
 Calculators are executed in isolated processes and directories.
 The resulting objects are returned in the list (one per input system).
 '''

 if type(systems) != type([]) :
 sysl=[systems]
 else :
 sysl=systems

 if block :
 iq=Queue(len(sysl)+1)
 oq=Queue(len(sysl)+1)

 # Create workers
 for s in sysl:
 __PCalcProc(iq, oq, calc, prefix=prefix, cleanup=cleanup).start()

 # Put jobs into the queue
 for n,s in enumerate(sysl):
 iq.put([n,s])
 # Protection against too quick insertion
 time.sleep(0.2)

 if verbose :
 print("Workers started:", len(sysl))

 # Collect the results
 res=[]
 while len(res)<len(sysl) :
 n,s=oq.get()
 res.append([n,s])
 #print("Got from oq:", n, s.get_volume(), s.get_pressure())
 else :
 # We do not need the multiprocessing complications for non-blocking
 # workers. We just run all in sequence.
 basedir=os.getcwd()
 res=[]
 for n,s in enumerate(sysl):
 s.set_calculator(deepcopy(calc))
 s.get_calculator().block=block
 place=tempfile.mkdtemp(prefix=prefix, dir=basedir)
 os.chdir(place)
 s.get_calculator().working_dir=place
 #print("Start at :", place)
 if hasattr(calc, 'name') and calc.name=='Siesta':
 s.get_potential_energy()
 else:
 s.get_calculator().calculate(s)
 os.chdir(basedir)
 #print("Submited", s.get_calculator().calc_finished(), os.getcwd())
 # Protection against too quick insertion
 time.sleep(0.2)
 res.append([n,s])
 if verbose :
 print("Workers started:", len(sysl))

 return [r for ns,s in enumerate(sysl) for nr,r in res if nr==ns]

Testing routines using VASP as a calculator in the cluster environment.
TODO: Make it calculator/environment agnostic
if __name__ == '__main__':
 from ase.lattice.spacegroup import crystal
 from ase.units import GPa
 import elastic
 import numpy
 from pylab import *

 a = 4.291
 MgO = crystal(['Mg', 'O'], [(0, 0, 0), (0.5, 0.5, 0.5)], spacegroup=225,
 cellpar=[a, a, a, 90, 90, 90])

 ##################################
 # Provide your own calculator here
 ##################################
 calc=ClusterVasp(nodes=1,ppn=8)
 # The calculator must be runnable in an isolated directory
 # Without disturbing other running instances of the same calculator
 # They are run in separate processes (not threads!)

 MgO.set_calculator(calc)
 calc.set(prec = 'Accurate', xc = 'PBE', lreal = False, isif=2, nsw=20, ibrion=2, kpts=[1,1,1])

 print("Residual pressure: %.3f GPa" % (MgO.get_pressure()/GPa))
 calc.clean()

 systems=[]
 for av in numpy.linspace(a*0.95,a*1.05,5):
 systems.append(crystal(['Mg', 'O'], [(0, 0, 0), (0.5, 0.5, 0.5)], spacegroup=225,
 cellpar=[av, av, av, 90, 90, 90]))

 pcalc=ClusterVasp(nodes=1,ppn=8)
 pcalc.set(prec = 'Accurate', xc = 'PBE', lreal = False, isif=2, nsw=20, ibrion=2, kpts=[1,1,1])
 res=ParCalculate(systems,pcalc)

 v=[]
 p=[]
 for s in res :
 v.append(s.get_volume())
 p.append(s.get_pressure()/GPa)

 plot(v,p,'o')
 show()

 © Copyright 2015, Paweł T. Jochym.
 Last updated on May 15, 2016.
 Created using Sphinx 1.3.5.

This page uses
Google Analytics to collect statistics. You can disable it by blocking
the JavaScript coming from www.google-analytics.com.

_images/plot3.png
0.015

0.010

0.005

0.000

—0.005

-0.010

70'0}8.006 —0.004 —0.002 0.000 0.002 0.004 0.006

